
IEEE SPW: LangSec'17 (San Jose, CA)

Lua Code: Security Overview and Practical
Approaches to Static Analysis

Andrei Costin
ancostin@jyu.fi, andrei@firmware.re

University of Jyvaskyla, Finland

mailto:ancostin@jyu.fi
mailto:andrei@firmware.re

25th May 2017 Andrei Costin, Lua Code, LangSec'17 2

Agenda

● Introduction

● Contributions

● Implementation, examples, results

● Conclusions

● Acknowledgements and Q&A

25th May 2017 Andrei Costin, Lua Code, LangSec'17 3

Introduction

● Lua (Moon in Brazilian/Portuguese)

– Ierusalimschy et al., Pontifical Catholic University of Rio de Janeiro in
Brazil (PUC-Rio) [IER96]

● Interpreted, cross-platform, embeddable, performant and low-footprint
language

● Supports “extensible semantics, anonymous functions, full lexical scoping,
proper tail calls, and coroutines” [IER96]

● Many Lua resources: https://github.com/LewisJEllis/awesome-lua

https://github.com/LewisJEllis/awesome-lua

25th May 2017 Andrei Costin, Lua Code, LangSec'17 4

Introduction

● Lua's popularity is on the rise

● TIOBE Index

– 27th most popular (May 2017)

– Par or above: T-SQL, Lisp, Ada, Fortran, Scala, LabVIEW, Prolog, Haskell,
 Erlang, Bash

● PYPL Index

– 19th most popular (May 2017)

– Par or above: Go, Delphi, Haskell

25th May 2017 Andrei Costin, Lua Code, LangSec'17 5

Introduction

● Lua in numbers

– PHP is 16x-to-20x more „popular“ (PYPL Index, GitHub repository count by
„language:“)

– Still, around 30k Lua-based GitHub repositories

– Several millions ESP8266, ready for NodeLua/NodeMCU Lua firmware

– Huge number of other devices with Lua support/APIs

25th May 2017 Andrei Costin, Lua Code, LangSec'17 6

Introduction

● Lua in notorious use cases

– Web-facing Projects
● Wikipedia, GitHub, CloudFlare

– Tools, Projects
● Nmap, Wireshark, OpenWRT

– Conventional Malware
● Flamer, EvilBunny, ProjectSauron

25th May 2017 Andrei Costin, Lua Code, LangSec'17 7

Introduction

● Lua in notorious use cases

– IoT-specific Malware
● LuaBot

– Incredible amount of other important but less known projects
● IoT
● Home Automation
● SCADA/ICS
● Automotive
● Wireless/Mobile Chipsets

25th May 2017 Andrei Costin, Lua Code, LangSec'17 8

Introduction: Motivation

● Zero SAST tools for Lua code

– Many tools/services for other languages

– Coverity, VeraCode, AppScan, CodeClimate, RIPS, etc.

● Zero datasets with (intentionally) vulnerable Lua samples for experimentation

– Many datasets/projects for other languages

– BugBox, DVWA, WebGoat, SQLol, etc.

● Not much systematic research on Lua security, e.g., [DAR14]

25th May 2017 Andrei Costin, Lua Code, LangSec'17 9

Agenda

● Introduction

● Contributions

● Implementation, examples, results

● Conclusions

● Acknowledgements and Q&A

25th May 2017 Andrei Costin, Lua Code, LangSec'17 10

Contributions

● Develop and open-source the first and only static analysis tool for Lua code

● Build and open-source the first public corpus of synthetic Lua code samples

● Create and release the testing setups used in our experiments in form of
virtual and reproducible environments

25th May 2017 Andrei Costin, Lua Code, LangSec'17 11

Agenda

● Introduction

● Contributions

● Implementation, examples, results

● Conclusions

● Acknowledgements and Q&A

25th May 2017 Andrei Costin, Lua Code, LangSec'17 12

Implementation

● www.lua.re

● ANTLR4-based Python parser [PAR13]

● Lua.g4 from ANTLR's Grammars-V4 repository [SAK13]

● Built-in unit-tests

– $MSL/tests/test_msl_defaultconfig.py

– $MSL/tests/test_msl_VariousTests1.py

– $MSL/tests/test_msl_LangSec17.py
● Own Python-based unsophisticated taint engine

– $MSL/taint/

http://www.lua.re/

25th May 2017 Andrei Costin, Lua Code, LangSec'17 13

Implementation

● Flexible configurations and taint rules

– $MSL/config/defaultconfig.py

– Taint sensitive sinks (e.g., io.write)

– Taint unsanitizers (e.g., htmlunescape)

– Taint sanitizers (e.g., htmlentities)

– Taint propagation/passthru (e.g., strcat and '..' concat operator)

– Some combinations of above (e.g., see fake_strcat_print_popen)

25th May 2017 Andrei Costin, Lua Code, LangSec'17 14

Examples, Results

● Detects all the simple synthetic TP test-cases and Avoids all the simple
synthetic FP test-cases

– $MSL/tests/test_msl_VariousTests1.py

– $MSL/tests/test_msl_LangSec17.py

● Works on simple real-world code

– CVE-2014-4329: „Cross-site scripting (XSS) vulnerability in
lua/host_details.lua in ntopng 1.1 allows remote attackers to inject
arbitrary web script or HTML via the host parameter.“

25th May 2017 Andrei Costin, Lua Code, LangSec'17 15

Examples, Results

● CVE-2014-4329 with our tool: „... via the host and page parameters.“

25th May 2017 Andrei Costin, Lua Code, LangSec'17 16

Agenda

● Introduction

● Contributions

● Implementation, examples, results

● Conclusions

● Acknowledgements and Q&A

25th May 2017 Andrei Costin, Lua Code, LangSec'17 17

Conclusions

● Lua is a powerful and performant dynamic language

● Lua's popularity is on the rise within the embedded/IoT applications

● Obvious lack of both static analysis tools for Lua code and corpora of
vulnerable Lua code samples

● We bridge the gap by open-sourcing: Lua SAST tool, vulnerable code samples

25th May 2017 Andrei Costin, Lua Code, LangSec'17 18

Conclusions and Future Work

● Dramatically improve performance

● Improve the parser/lexer (e.g., fails on some real-world code snippets)

● Add missing features (e.g., dofile() and includes)

● Improve taint engine and rules

– Generic configurable taint engine?

– Interface with Joern engine [JOER]

25th May 2017 Andrei Costin, Lua Code, LangSec'17 19

Agenda

● Introduction

● Contributions

● Implementation, examples, results

● Conclusions

● Acknowledgements and Q&A

25th May 2017 Andrei Costin, Lua Code, LangSec'17 20

Acknowledgements

● NLnet.nl Foundation and Binary Analysis Tools (BAT) Project

– This project was supported by the NLnet.nl grant: 2014-09-017e

● Michiel Leenaars from NLnet foundation

● Armijn Hemel from Tjaldur Software Governance Solutions

● LangSec'17 reviewers, shepherds and organizers!

http://nlnet.nl/
http://www.binaryanalysis.org/

25th May 2017 Andrei Costin, Lua Code, LangSec'17 21

Q&A

● Questions, suggestions, ideas?

www.lua.re

ancostin@jyu.fi

andrei@firmware.re

Twitter: @costinandrei

http://www.lua.re/
mailto:ancostin@jyu.fi
mailto:andrei@firmware.re

25th May 2017 Andrei Costin, Lua Code, LangSec'17 22

References

● [IER96] R. Ierusalimschy, L. H. De Figueiredo, and W. Celes Filho, “Lua – an
extensible extension language”, 1996

● [PAR13] T. Parr, "The definitive ANTLR 4 reference". Pragmatic Bookshelf,
2013

● [SAK13] K. Sakamoto, A. Alexeev,
https://github.com/antlr/grammars-v4/blob/master/lua/Lua.g4

● [JOER] F. Yamaguchi, "An Intelligent and Robust Code Analysis Platform for
C/C++"

● [DAR14] F. Daragon, „Lua Web Application Security Vulnerabilities“

https://github.com/antlr/grammars-v4/blob/master/lua/Lua.g4

IEEE SPW: LangSec'17 (San Jose, CA)

Lua Code: Security Overview and Practical
Approaches to Static Analysis

Andrei Costin
ancostin@jyu.fi, andrei@firmware.re

University of Jyvaskyla, Finland

mailto:ancostin@jyu.fi
mailto:andrei@firmware.re

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

